A unified optimization algorithm for solving "regret-minimizing representative" problems

Author:

Shetiya Suraj1,Asudeh Abolfazl2,Ahmed Sadia1,Das Gautam1

Affiliation:

1. University of Texas at Arlington

2. University of Illinois at Chicago

Abstract

Given a database with numeric attributes, it is often of interest to rank the tuples according to linear scoring functions. For a scoring function and a subset of tuples, the regret of the subset is defined as the (relative) difference in scores between the top-1 tuple of the subset and the top-1 tuple of the entire database. Finding the regret-ratio minimizing set (RRMS), i.e., the subset of a required size k that minimizes the maximum regret-ratio across all possible ranking functions, has been a well-studied problem in recent years. This problem is known to be NP-complete and there are several approximation algorithms for it. Other NP-complete variants have also been investigated, e.g., finding the set of size k that minimizes the average regret ratio over all linear functions. Prior work have designed customized algorithms for different variants of the problem, and are unlikely to easily generalize to other variants. In this paper we take a different path towards tackling these problems. In contrast to the prior, we propose a unified algorithm for solving different problem variants. Unification is done by localizing the customization to the design of variant-specific subroutines or "oracles" that are called by our algorithm. Our unified algorithm takes inspiration from the seemingly unrelated problem of clustering from data mining, and the corresponding k-medoid algorithm. We make several innovative contributions in designing our algorithm, including various techniques such as linear programming, edge sampling in graphs, volume estimation of multi-dimensional convex polytopes, and several others. We provide rigorous theoretical analysis, as well as substantial experimental evaluations over real and synthetic data sets to demonstrate the practical feasibility of our approach.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Regret Minimization: A Submodular Approach;IEEE Transactions on Knowledge and Data Engineering;2023

2. Happiness maximizing sets under group fairness constraints;Proceedings of the VLDB Endowment;2022-10

3. Efficient processing of k-regret minimization queries with theoretical guarantees;Information Sciences;2022-03

4. Continuous k-Regret Minimization Queries: A Dynamic Coreset Approach;IEEE Transactions on Knowledge and Data Engineering;2022

5. Minimum Coresets for Maxima Representation of Multidimensional Data;Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems;2021-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3