Affiliation:
1. University of Waterloo
Abstract
The introduction of Google's Pregel generated much interest in the field of large-scale graph data processing, inspiring the development of Pregel-like systems such as Apache Giraph, GPS, Mizan, and GraphLab, all of which have appeared in the past two years. To gain an understanding of how Pregel-like systems perform, we conduct a study to experimentally compare Giraph, GPS, Mizan, and GraphLab on equal ground by considering graph and algorithm agnostic optimizations and by using several metrics. The systems are compared with four different algorithms (PageRank, single source shortest path, weakly connected components, and distributed minimum spanning tree) on up to 128 Amazon EC2 machines. We find that the system optimizations present in Giraph and GraphLab allow them to perform well. Our evaluation also shows Giraph 1.0.0's considerable improvement since Giraph 0.1 and identifies areas of improvement for all systems.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
129 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献