Relational approach for shortest path discovery over large graphs

Author:

Gao Jun1,Jin Ruoming2,Zhou Jiashuai1,Yu Jeffrey Xu3,Jiang Xiao1,Wang Tengjiao1

Affiliation:

1. Peking University

2. Kent State University

3. Chinese University of Hong Kong

Abstract

With the rapid growth of large graphs, we cannot assume that graphs can still be fully loaded into memory, thus the disk-based graph operation is inevitable. In this paper, we take the shortest path discovery as an example to investigate the technique issues when leveraging existing infrastructure of relational database (RDB) in the graph data management. Based on the observation that a variety of graph search queries can be implemented by iterative operations including selecting frontier nodes from visited nodes, making expansion from the selected frontier nodes, and merging the expanded nodes into the visited ones, we introduce a relational FEM framework with three corresponding operators to implement graph search tasks in the RDB context. We show new features such as window function and merge statement introduced by recent SQL standards can not only simplify the expression but also improve the performance of the FEM framework. In addition, we propose two optimization strategies specific to shortest path discovery inside the FEM framework. First, we take a bi-directional set Dijkstra's algorithm in the path finding. The bi-directional strategy can reduce the search space, and set Dijkstra's algorithm finds the shortest path in a set-at-a-time fashion. Second, we introduce an index named SegTable to preserve the local shortest segments, and exploit SegTable to further improve the performance. The final extensive experimental results illustrate our relational approach with the optimization strategies achieves high scalability and performance.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On reducing energy cost consumption in heterogeneous cellular networks using optimal time constraint algorithm;Optik;2022-11

2. Shortest-path queries on complex networks;Proceedings of the VLDB Endowment;2022-07

3. Efficient Hop-constrained s-t Simple Path Enumeration;The VLDB Journal;2021-05-08

4. Efficient Constrained Subgraph Extraction for Exploratory Discovery in Large Knowledge Graphs;2020 IEEE International Conference on Big Data (Big Data);2020-12-10

5. Vectorising k-Core Decomposition for GPU Acceleration;32nd International Conference on Scientific and Statistical Database Management;2020-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3