Towards cost-effective storage provisioning for DBMSs

Author:

Zhang Ning1,Tatemura Junichi2,Patel Jignesh M.1,Hacigümüş Hakan2

Affiliation:

1. University of Wisconsin-Madison

2. NEC Laboratories America

Abstract

Data center operators face a bewildering set of choices when considering how to provision resources on machines with complex I/O subsystems. Modern I/O subsystems often have a rich mix of fast, high performing, but expensive SSDs sitting alongside with cheaper but relatively slower (for random accesses) traditional hard disk drives. The data center operators need to determine how to provision the I/O resources for specific workloads so as to abide by existing Service Level Agreements (SLAs), while minimizing the total operating cost (TOC) of running the workload, where the TOC includes the amortized hardware costs and the run time energy costs. The focus of this paper is on introducing this new problem of TOC-based storage allocation, cast in a framework that is compatible with traditional DBMS query optimization and query processing architecture. We also present a heuristic-based solution to this problem, called DOT. We have implemented DOT in PostgreSQL, and experiments using TPC-H and TPC-C demonstrate significant TOC reduction by DOT in various settings.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep variability modeling to enhance reproducibility of database performance testing;Cluster Computing;2024-06-02

2. Multi-objective Optimization of Data Placement in a Storage-as-a-Service Federated Cloud;ACM Transactions on Storage;2021-08-31

3. A Cost Model for Hybrid Storage Systems in a Cloud Federations;Proceedings of the 2018 Federated Conference on Computer Science and Information Systems;2018-09-26

4. MetricStore repository;Proceedings of the Symposium on Applied Computing;2017-04-03

5. DBMS Metrology;ACM Transactions on Database Systems;2017-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3