Dalton

Author:

Zapridou Eleni1,Mytilinis Ioannis2,Ailamaki Anastasia1

Affiliation:

1. EPFL

2. Oracle

Abstract

To sustain the input rate of high-throughput streams, modern stream processing systems rely on parallel execution. However, skewed data yield imbalanced load assignments and create stragglers that hinder scalability Deciding on a static partitioning for a given set of "hot" keys is not sufficient as these keys are not known in advance, and even worse, the data distribution can change unpredictably. Existing algorithms either optimize for a specific distribution or, in order to adapt, assume a centralized partitioner that processes every incoming tuple and observes the whole workload. However, this is not realistic in a distributed environment, where multiple parallel upstream operators exist, as the centralized partitioner itself becomes the bottleneck and limits scalability In this work, we propose Dalton: a lightweight, adaptive, yet scalable partitioning operator that relies on reinforcement learning. By memoizing state and dynamically keeping track of recent experience, Dalton: i) adjusts its policy at runtime and quickly adapts to the workload, ii) avoids redundant computations and minimizes the per-tuple partitioning overhead, and iii) efficiently scales out to multiple instances that learn cooperatively and converge to a joint policy Our experiments indicate that Dalton scales regardless of the input data distribution and sustains 1.3X - 6.7X higher throughput than existing approaches.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FlexSP:(1 + β)-Choice based Flexible Stream Partitioning for Stateful Operators;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

2. Last Night in Sweden: A Vision for Resource-Intelligent Stream Reasoning;Proceedings of the 18th ACM International Conference on Distributed and Event-based Systems;2024-06-24

3. GLO: Towards Generalized Learned Query Optimization;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. ZeroTune: Learned Zero-Shot Cost Models for Parallelism Tuning in Stream Processing.;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. Adaptive key partitioning in distributed stream processing;CCF Transactions on High Performance Computing;2024-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3