Optimal algorithms for crawling a hidden database in the web

Author:

Sheng Cheng1,Zhang Nan2,Tao Yufei3,Jin Xin2

Affiliation:

1. Chinese University of Hong Kong

2. George Washington University

3. Chinese University of Hong Kong and Korea Advanced Institute of Science and Technology

Abstract

A hidden database refers to a dataset that an organization makes accessible on the web by allowing users to issue queries through a search interface. In other words, data acquisition from such a source is not by following static hyper-links. Instead, data are obtained by querying the interface, and reading the result page dynamically generated. This, with other facts such as the interface may answer a query only partially, has prevented hidden databases from being crawled effectively by existing search engines. This paper remedies the problem by giving algorithms to extract all the tuples from a hidden database. Our algorithms are provably efficient, namely, they accomplish the task by performing only a small number of queries, even in the worst case. We also establish theoretical results indicating that these algorithms are asymptotically optimal -- i.e., it is impossible to improve their efficiency by more than a constant factor. The derivation of our upper and lower bound results reveals significant insight into the characteristics of the underlying problem. Extensive experiments confirm the proposed techniques work very well on all the real datasets examined.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data distribution tailoring revisited: cost-efficient integration of representative data;The VLDB Journal;2024-04-12

2. Decision tree Thompson sampling for mining hidden populations through attributed search;Social Network Analysis and Mining;2021-11-15

3. A third-party replication service for dynamic hidden databases;Service Oriented Computing and Applications;2021-01-08

4. CRUX;Proceedings of the 28th ACM International Conference on Information and Knowledge Management;2019-11-03

5. Social Security and Privacy for Social IoT Polymorphic Value Set: A Solution to Inference Attacks on Social Networks;Security and Communication Networks;2019-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3