Who tags what?

Author:

Das Mahashweta1,Thirumuruganathan Saravanan1,Amer-Yahia Sihem2,Das Gautam3,Yu Cong4

Affiliation:

1. University of Texas at Arlington

2. Qatar Computing Research Institute

3. University of Texas at Arlington and Qatar Computing Research Institute

4. Google Research

Abstract

The rise of Web 2.0 is signaled by sites such as Flickr, del.icio.us, and YouTube, and social tagging is essential to their success. A typical tagging action involves three components, user, item (e.g., photos in Flickr), and tags (i.e., words or phrases). Analyzing how tags are assigned by certain users to certain items has important implications in helping users search for desired information. In this paper, we explore common analysis tasks and propose a dual mining framework for social tagging behavior mining. This framework is centered around two opposing measures, similarity and diversity , being applied to one or more tagging components, and therefore enables a wide range of analysis scenarios such as characterizing similar users tagging diverse items with similar tags, or diverse users tagging similar items with diverse tags, etc. By adopting different concrete measures for similarity and diversity in the framework, we show that a wide range of concrete analysis problems can be defined and they are NP-Complete in general. We design efficient algorithms for solving many of those problems and demonstrate, through comprehensive experiments over real data, that our algorithms significantly out-perform the exact brute-force approach without compromising analysis result quality.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Similarity-driven and task-driven models for diversity of opinion in crowdsourcing markets;The VLDB Journal;2024-05-17

2. Research in Collaborative Tagging Applications: Choosing the Right Dataset;VAWKUM Transactions on Computer Sciences;2023-03-05

3. DORA THE EXPLORER;Proceedings of the 30th ACM International Conference on Information & Knowledge Management;2021-10-26

4. Balancing Familiarity and Curiosity in Data Exploration with Deep Reinforcement Learning;Fourth Workshop in Exploiting AI Techniques for Data Management;2021-06-20

5. Cleaning Uncertain Data with Crowdsourcing - a General Model with Diverse Accuracy Rates;IEEE Transactions on Knowledge and Data Engineering;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3