Abstract
The success of "infinite-inventory" retailers such as Amazon.com and Netflix has been largely attributed to a "long tail" phenomenon. Although the majority of their inventory is not in high demand, these niche products, unavailable at limited-inventory competitors, generate a significant fraction of total revenue in aggregate. In addition, tail product availability can boost head sales by offering consumers the convenience of "one-stop shopping" for both their mainstream and niche tastes. However, most of existing recommender systems, especially collaborative filter based methods, can not recommend tail products due to the data sparsity issue. It has been widely acknowledged that to recommend popular products is easier yet more trivial while to recommend long tail products adds more novelty yet it is also a more challenging task.
In this paper, we propose a novel suite of graph-based algorithms for the long tail recommendation. We first represent user-item information with undirected edge-weighted graph and investigate the theoretical foundation of applying Hitting Time algorithm for long tail item recommendation. To improve recommendation diversity and accuracy, we extend Hitting Time and propose efficient Absorbing Time algorithm to help users find their favorite long tail items. Finally, we refine the Absorbing Time algorithm and propose two entropy-biased Absorbing Cost algorithms to distinguish the variation on different user-item rating pairs, which further enhances the effectiveness of long tail recommendation. Empirical experiments on two real life datasets show that our proposed algorithms are effective to recommend long tail items and outperform state-of-the-art recommendation techniques.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
188 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献