Boosting moving object indexing through velocity partitioning

Author:

Nguyen Thi1,He Zhen1,Zhang Rui2,Ward Phillip3

Affiliation:

1. La Trobe University, Australia

2. University of Melbourne, Australia

3. La Trobe University, Australia and CSIRO Land and Water, Highett, Victoria, Australia

Abstract

There have been intense research interests in moving object indexing in the past decade. However, existing work did not exploit the important property of skewed velocity distributions. In many real world scenarios, objects travel predominantly along only a few directions. Examples include vehicles on road networks, flights, people walking on the streets, etc. The search space for a query is heavily dependent on the velocity distribution of the objects grouped in the nodes of an index tree. Motivated by this observation, we propose the velocity partitioning (VP) technique, which exploits the skew in velocity distribution to speed up query processing using moving object indexes. The VP technique first identifies the "dominant velocity axes (DVAs)" using a combination of principal components analysis (PCA) and k-means clustering. Then, a moving object index (e.g., a TPR-tree) is created based on each DVA, using the DVA as an axis of the underlying coordinate system. An object is maintained in the index whose DVA is closest to the object's current moving direction. Thus, all the objects in an index are moving in a near 1-dimensional space instead of a 2-dimensional space. As a result, the expansion of the search space with time is greatly reduced, from a quadratic function of the maximum speed (of the objects in the search range) to a near linear function of the maximum speed. The VP technique can be applied to a wide range of moving object index structures. We have implemented the VP technique on two representative ones, the TPR*-tree and the B x -tree. Extensive experiments validate that the VP technique consistently improves the performance of those index structures.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3