Flexible Resource Allocation for Relational Database-as-a-Service

Author:

Arora Pankaj1,Chaudhuri Surajit1,Das Sudipto2,Dong Junfeng1,George Cyril1,Kalhan Ajay1,König Arnd Christian1,Lang Willis1,Li Changsong1,Li Feng3,Liu Jiaqi1,Maas Lukas M.1,Mata Akshay1,Menache Ishai1,Moeller Justin1,Narasayya Vivek1,Olma Matthaios1,Oslake Morgan1,Rezai Elnaz4,Shan Yi1,Syamala Manoj1,Xu Shize5,Zois Vasileios1

Affiliation:

1. Microsoft Corporation

2. Amazon Web Services

3. Meta Platforms Inc.

4. Amazon

5. Stripe Inc.

Abstract

Oversubscription is an essential cost management strategy for cloud database providers, and its importance is magnified by the emerging paradigm of serverless databases. In contrast to general purpose techniques used for oversubscription in hypervisors, operating systems and cluster managers, we develop techniques that leverage our understanding of how DBMSs use resources and how resource allocations impact database performance. Our techniques are designed to flexibly redistribute resources across database tenants at the node and cluster levels with low overhead. We have implemented our techniques in a commercial cloud database service: Azure SQL Database. Experiments using microbenchmarks, industry-standard benchmarks and real-world resource usage traces show that using our approach, it is possible to tightly control the impact on database performance even with a relatively high degree of oversubscription.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference56 articles.

1. AWS. 2021. Amazon Aurora Serverless. https://aws.amazon.com/rds/aurora/serverless/ Last accessed on Sep 27, 2023 . AWS. 2021. Amazon Aurora Serverless. https://aws.amazon.com/rds/aurora/serverless/ Last accessed on Sep 27, 2023.

2. AWS. 2023. Amazon Aurora . http://aws.amazon.com/rds/aurora/ Last accessed on September 27, 2023 . AWS. 2023. Amazon Aurora. http://aws.amazon.com/rds/aurora/ Last accessed on September 27, 2023.

3. Microsoft Azure. 2020. Configuring and using Service Affinity in Service Fabric. https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-advanced-placement-rules-affinity Last accessed on September 27 2023. Microsoft Azure. 2020. Configuring and using Service Affinity in Service Fabric. https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-advanced-placement-rules-affinity Last accessed on September 27 2023.

4. Microsoft Azure . 2021. Service Fabric Cluster Resource Manager. https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-cluster-description Last accessed on September 27, 2023 . Microsoft Azure. 2021. Service Fabric Cluster Resource Manager. https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-cluster-description Last accessed on September 27, 2023.

5. Microsoft Azure . 2022. Create a Service Fabric Cluster. https://docs.microsoft.com/en-us/azure/service-fabric/scripts/service-fabric-powershell-create-secure-cluster-cert Last accessed on September 27, 2023 . Microsoft Azure. 2022. Create a Service Fabric Cluster. https://docs.microsoft.com/en-us/azure/service-fabric/scripts/service-fabric-powershell-create-secure-cluster-cert Last accessed on September 27, 2023.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3