Work-efficient parallel skyline computation for the GPU

Author:

Bøgh Kenneth S.1,Chester Sean1,Assent Ira1

Affiliation:

1. Aarhus University

Abstract

The skyline operator returns records in a dataset that provide optimal trade-offs of multiple dimensions. State-of-the-art skyline computation involves complex tree traversals, data-ordering, and conditional branching to minimize the number of point-to-point comparisons. Meanwhile, GPGPU computing offers the potential for parallelizing skyline computation across thousands of cores. However, attempts to port skyline algorithms to the GPU have prioritized throughput and failed to outperform sequential algorithms. In this paper, we introduce a new skyline algorithm, designed for the GPU, that uses a global, static partitioning scheme. With the partitioning, we can permit controlled branching to exploit transitive relationships and avoid most point-to-point comparisons. The result is a non-traditional GPU algorithm, SkyAlign, that prioritizes work-efficiency and respectable throughput, rather than maximal throughput, to achieve orders of magnitude faster performance.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parallel Skyline Processing Using Space Pruning on GPU;Proceedings of the 31st ACM International Conference on Information & Knowledge Management;2022-10-17

2. GAM: A GPU-Accelerated Algorithm for MaxRS Queries in Road Networks;Journal of Computer Science and Technology;2022-09-30

3. Efficient processing of top k group skyline queries;Knowledge-Based Systems;2019-10

4. Parallelizing uncertain skyline computation against n ‐of‐ N data streaming model;Concurrency and Computation: Practice and Experience;2018-11-06

5. Massively parallel skyline computation for processing-in-memory architectures;Proceedings of the 27th International Conference on Parallel Architectures and Compilation Techniques;2018-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3