Giraph unchained

Author:

Han Minyang1,Daudjee Khuzaima1

Affiliation:

1. University of Waterloo

Abstract

The bulk synchronous parallel (BSP) model used by synchronous graph processing systems allows algorithms to be easily implemented and reasoned about. However, BSP can suffer from poor performance due to stale messages and frequent global synchronization barriers. Asynchronous computation models have been proposed to alleviate these overheads but existing asynchronous systems that implement such models have limited scalability or retain frequent global barriers, and do not always support graph mutations or algorithms with multiple computation phases. We propose barrierless asynchronous parallel (BAP), a new computation model that reduces both message staleness and global synchronization. This enables BAP to overcome the limitations of existing asynchronous models while retaining support for graph mutations and algorithms with multiple computation phases. We present GiraphUC, which implements our BAP model in the open source distributed graph processing system Giraph, and evaluate our system at scale with large real-world graphs on 64 EC2 machines. We show that GiraphUC provides across-the-board performance improvements of up to 5× faster over synchronous systems and up to an order of magnitude faster than asynchronous systems. Our results demonstrate that the BAP model provides efficient and transparent asynchronous execution of algorithms that are programmed synchronously.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Distributed Graph Algorithms on Massive Graphs;ACM Computing Surveys;2024-09-05

2. No Worker Left (Too Far) Behind: Dynamic Hybrid Synchronization for In‐Network ML Aggregation;International Journal of Network Management;2024-07-24

3. How to Fit the SCC Algorithm Efficiently into Distributed Graph Iterative Computation;2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC);2024-07-02

4. Accelerating Graph Analytics Using Attention-Based Data Prefetcher;SN Computer Science;2024-06-13

5. Graphix: “One User's JSON is Another User's Graph”;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3