Distributed Graph Embedding with Information-Oriented Random Walks

Author:

Fang Peng1,Khan Arijit2,Luo Siqiang3,Wang Fang1,Feng Dan1,Li Zhenli1,Yin Wei1,Cao Yuchao1

Affiliation:

1. Huazhong University of Science and Technology, China

2. Aalborg University, Denmark

3. Nanyang Technological University, Singapore

Abstract

Graph embedding maps graph nodes to low-dimensional vectors, and is widely adopted in machine learning tasks. The increasing availability of billion-edge graphs underscores the importance of learning efficient and effective embeddings on large graphs, such as link prediction on Twitter with over one billion edges. Most existing graph embedding methods fall short of reaching high data scalability. In this paper, we present a general-purpose, distributed, information-centric random walk-based graph embedding framework, DistGER, which can scale to embed billion-edge graphs. DistGER incrementally computes information-centric random walks. It further leverages a multi-proximity-aware, streaming, parallel graph partitioning strategy, simultaneously achieving high local partition quality and excellent workload balancing across machines. DistGER also improves the distributed Skip-Gram learning model to generate node embeddings by optimizing the access locality, CPU throughput, and synchronization efficiency. Experiments on real-world graphs demonstrate that compared to state-of-the-art distributed graph embedding frameworks, including KnightKing, DistDGL, and Pytorch-BigGraph, DistGER exhibits 2.33×--129× acceleration, 45% reduction in cross-machines communication, and >10% effectiveness improvement in downstream tasks.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TIGER: Training Inductive Graph Neural Network for Large-Scale Knowledge Graph Reasoning;Proceedings of the VLDB Endowment;2024-06

2. DeepWalk with Reinforcement Learning (DWRL) for node embedding;Expert Systems with Applications;2024-06

3. Efficient Approximation of Kemeny's Constant for Large Graphs;Proceedings of the ACM on Management of Data;2024-05-29

4. Scalable Node Embedding Algorithms Using Distributed Sparse Matrix Operations;2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2024-05-27

5. Synergies Between Graph Data Management and Machine Learning in Graph Data Pipeline;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3