Affiliation:
1. University of California
Abstract
This paper explores the data cleaning challenges that arise in using WiFi connectivity data to locate users to semantic indoor locations such as buildings, regions, rooms. WiFi connectivity data consists of sporadic connections between devices and nearby WiFi access points (APs), each of which may cover a relatively large area within a building. Our system, entitled semantic LOCATion cleanER (LOCATER), postulates semantic localization as a series of data cleaning tasks - first, it treats the problem of determining the AP to which a device is connected between any two of its connection events as a missing value detection and repair problem. It then associates the device with the semantic subregion (e.g., a conference room in the region) by postulating it as a location disambiguation problem. LOCATER uses a bootstrapping semi-supervised learning method for coarse localization and a probabilistic method to achieve finer localization. The paper shows that LOCATER can achieve significantly high accuracy at both the coarse and fine levels.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献