EdgeDIPN

Author:

Guo Long1,Hua Lifeng1,Jia Rongfei1,Fang Fei1,Zhao Binqiang1,Cui Bin2

Affiliation:

1. Alibaba Inc

2. Peking University

Abstract

With the rapid growth of e-commerce in recent years, e-commerce platforms are becoming a primary place for people to find, compare and ultimately purchase products. To improve online shopping experience for consumers and increase sales for sellers, it is important to understand user intent accurately and be notified of its change timely. In this way, the right information could be offered to the right person at the right time. To achieve this goal, we propose a unified deep intent prediction network, named EdgeDIPN, which is deployed at the edge, i.e., mobile device, and able to monitor multiple user intent with different granularity simultaneously in real-time. We propose to train EdgeDIPN with multi-task learning, by which EdgeDIPN can share representations between different tasks for better performance and saving edge resources in the meantime. In particular, we propose a novel task-specific attention mechanism which enables different tasks to pick out the most relevant features from different data sources. To extract the shared representations more effectively, we utilize two kinds of attention mechanisms, where the multi-level attention mechanism tries to identify the important actions within each data source and the inter-view attention mechanism learns the interactions between different data sources. In the experiments conducted on a large-scale industrial dataset, EdgeDIPN significantly outperforms the baseline solutions. Moreover, EdgeDIPN has been deployed in the operational system of Alibaba. Online A/B testing results in several business scenarios reveal the potential of monitoring user intent in real-time. To the best of our knowledge, EdgeDIPN is the first full-fledged real-time user intent understanding center deployed at the edge and serving hundreds of millions of users in a large-scale e-commerce platform.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding user intent modeling for conversational recommender systems: a systematic literature review;User Modeling and User-Adapted Interaction;2024-06-06

2. Hierarchical Interest Modeling of Long-tailed Users for Click-Through Rate Prediction;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

3. Intelligent Request Strategy Design in Recommender System;Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2022-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3