Toward a better understanding and evaluation of tree structures on flash SSDs

Author:

Didona Diego1,Ioannou Nikolas1,Stoica Radu1,Kourtis Kornilios2

Affiliation:

1. IBM Research Zurich, Rüschlikon, Switzerland

2. Cilium, Zurich, Switzerland

Abstract

Solid-state drives (SSDs) are extensively used to deploy persistent data stores, as they provide low latency random access, high write throughput, high data density, and low cost. Tree-based data structures are widely used to build persistent data stores, and indeed they lie at the backbone of many of the data management systems used in production and research today. We show that benchmarking a persistent tree-based data structure on an SSD is a complex process, which may easily incur subtle pitfalls that can lead to an inaccurate performance assessment. At a high-level, these pitfalls stem from the interaction of complex software running on complex hardware. On the one hand, tree structures implement internal operations that have non-trivial effects on performance. On the other hand, SSDs employ firmware logic to deal with the idiosyncrasies of the underlying flash memory, which are well known to also lead to complex performance dynamics. We identify seven benchmarking pitfalls using RocksDB and WiredTiger, two widespread implementations of an LSM-Tree and a B+Tree, respectively. We show that such pitfalls can lead to incorrect measurements of key performance indicators, hinder the reproducibility and the representativeness of the results, and lead to suboptimal deployments in production environments. We also provide guidelines on how to avoid these pitfalls to obtain more reliable performance measurements, and to perform more thorough and fair comparisons among different design points.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DumpyOS: A data-adaptive multi-ary index for scalable data series similarity search;The VLDB Journal;2024-08-21

2. CAVE: Concurrency-Aware Graph Processing on SSDs;Proceedings of the ACM on Management of Data;2024-05-29

3. BFQ, Multiqueue-Deadline, or Kyber? Performance Characterization of Linux Storage Schedulers in the NVMe Era;Proceedings of the 15th ACM/SPEC International Conference on Performance Engineering;2024-05-07

4. A Systematic Configuration Space Exploration of the Linux Kyber I/O Scheduler;Companion of the 15th ACM/SPEC International Conference on Performance Engineering;2024-05-07

5. FlashAlloc: Dedicating Flash Blocks by Objects;Proceedings of the VLDB Endowment;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3