Disk

Author:

Wang Yue1,Xu Ruiqi2,Feng Zonghao3,Che Yulin3,Chen Lei3,Luo Qiong3,Mao Rui1

Affiliation:

1. Shenzhen University

2. University of Edinburgh

3. HKUST

Abstract

Measuring similarities among different nodes is important in graph analysis. SimRank is one of the most popular similarity measures. Given a graph G ( V , E ) and a source node u , a single-source Sim-Rank query returns the similarities between u and each node vV. This type of query is often used in link prediction, personalized recommendation and spam detection. While dealing with a large graph is beyond the ability of a single machine due to its limited memory and computational power, it is necessary to process single-source SimRank queries in a distributed environment, where the graph is partitioned and distributed across multiple machines. However, most current solutions are based on shared-memory model, where the whole graph is loaded into a shared memory and all processors can access the graph randomly. It is difficult to deploy such algorithms on shared-nothing model. In this paper, we present DISK, a distributed framework for processing single-source SimRank queries. DISK follows the linearized formulation of SimRank, and consists of offline and online phases. In the offline phase, a tree-based method is used to estimate the diagonal correction matrix of SimRank accurately, and in the online phase, single-source similarities are computed iteratively. Under this framework, we propose different optimization techniques to boost the indexing and queries. DISK guarantees both accuracy and parallel scalability, which distinguishes itself from existing solutions. Its accuracy, efficiency, parallel scalability and scalability are also verified by extensive experimental studies. The experiments show that DISK scales up to graphs of billions of nodes and edges, and answers online queries within seconds, while ensuring the accuracy bounds.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Distributed Graph Algorithms on Massive Graphs;ACM Computing Surveys;2024-09-05

2. ClipSim: A GPU-friendly Parallel Framework for Single-Source SimRank with Accuracy Guarantee;Proceedings of the ACM on Management of Data;2023-05-26

3. Efficient index-free SimRank similarity search in large graphs by discounting path lengths;Expert Systems with Applications;2022-11

4. Personalized query techniques in graphs: A survey;Information Sciences;2022-08

5. Event Cube for Suicidal Event Analysis: A Case Study;Web Information Systems Engineering – WISE 2021;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3