Understanding the sparse vector technique for differential privacy

Author:

Lyu Min1,Su Dong2,Li Ninghui2

Affiliation:

1. University of Science and Technology of China and Purdue University

2. Purdue University

Abstract

The Sparse Vector Technique (SVT) is a fundamental technique for satisfying differential privacy and has the unique quality that one can output some query answers without apparently paying any privacy cost. SVT has been used in both the interactive setting, where one tries to answer a sequence of queries that are not known ahead of the time, and in the non-interactive setting, where all queries are known. Because of the potential savings on privacy budget, many variants for SVT have been proposed and employed in privacy-preserving data mining and publishing. However, most variants of SVT are actually not private. In this paper, we analyze these errors and identify the misunderstandings that likely contribute to them. We also propose a new version of SVT that provides better utility, and introduce an effective technique to improve the performance of SVT. These enhancements can be applied to improve utility in the interactive setting. Through both analytical and experimental comparisons, we show that, in the non-interactive setting (but not the interactive setting), the SVT technique is unnecessary, as it can be replaced by the Exponential Mechanism (EM) with better accuracy.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Secure Collaborative Learning for Self-Adaptive Systems on Connected Autonomous Vehicles;ACM Transactions on Autonomous and Adaptive Systems;2024-08-31

2. Review of Federated Learning and Machine Learning-Based Methods for Medical Image Analysis;Big Data and Cognitive Computing;2024-08-28

3. Gradual Differentially Private Programming;Communications of the ACM;2024-08

4. Enhancing Privacy in Federated Learning: A Practical Assessment of Combined PETs in a Cross-Silo Setting;Proceedings of the 2024 ACM Workshop on Information Hiding and Multimedia Security;2024-06-24

5. Time-Aware Projections: Truly Node-Private Graph Statistics under Continual Observation*;2024 IEEE Symposium on Security and Privacy (SP);2024-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3