Fully dynamic depth-first search in directed graphs

Author:

Yang Bohua1,Wen Dong1,Qin Lu1,Zhang Ying1,Wang Xubo1,Lin Xuemin2

Affiliation:

1. University of Technology Sydney, Australia

2. The University of New South Wales, Australia

Abstract

Depth-first search (DFS) is a fundamental and important algorithm in graph analysis. It is the basis of many graph algorithms such as computing strongly connected components, testing planarity, and detecting biconnected components. The result of a DFS is normally shown as a DFS-Tree. Given the frequent updates in many real-world graphs (e.g., social networks and communication networks), we study the problem of DFS-Tree maintenance in dynamic directed graphs. In the literature, most works focus on the DFS-Tree maintenance problem in undirected graphs and directed acyclic graphs. However, their methods cannot easily be applied in the case of general directed graphs. Motivated by this, we propose a framework and corresponding algorithms for both edge insertion and deletion in general directed graphs. We further give several optimizations to speed up the algorithms. We conduct extensive experiments on 12 real-world datasets to show the efficiency of our proposed algorithms.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Querying Structural Diversity in Streaming Graphs;Proceedings of the VLDB Endowment;2024-01

2. Recent Advances in Fully Dynamic Graph Algorithms – A Quick Reference Guide;ACM Journal of Experimental Algorithmics;2022-12-13

3. Accelerating Depth-First Traversal by Graph Ordering;33rd International Conference on Scientific and Statistical Database Management;2021-07-06

4. Incrementalizing Graph Algorithms;Proceedings of the 2021 International Conference on Management of Data;2021-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3