Secure multi-party functional dependency discovery

Author:

Ge Chang1,Ilyas Ihab F.1,Kerschbaum Florian1

Affiliation:

1. University of Waterloo

Abstract

Data profiling is an important task to understand data semantics and is an essential pre-processing step in many tools. Due to privacy constraints, data is often partitioned into silos, with different access control. Discovering functional dependencies (FDs) usually requires access to all data partitions to find constraints that hold on the whole dataset. Simply applying general secure multi-party computation protocols incurs high computation and communication cost. This paper formulates the FD discovery problem in the secure multi-party scenario. We propose secure constructions for validating candidate FDs, and present efficient cryptographic protocols to discover FDs over distributed partitions. Experimental results show that solution is practically efficient over non-secure distributed FD discovery, and can significantly outperform general purpose multi-party computation frameworks. To the best of our knowledge, our work is the first one to tackle this problem.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Secure and Practical Functional Dependency Discovery in Outsourced Databases;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. Mixed Covers of Keys and Functional Dependencies for Maintaining the Integrity of Data under Updates;Proceedings of the VLDB Endowment;2024-03

3. ATLAS: GAN-Based Differentially Private Multi-Party Data Sharing;IEEE Transactions on Big Data;2023-08-01

4. Falcon: A Privacy-Preserving and Interpretable Vertical Federated Learning System;Proceedings of the VLDB Endowment;2023-06

5. Discovering Top-k Rules using Subjective and Objective Criteria;Proceedings of the ACM on Management of Data;2023-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3