Affiliation:
1. École Polytechnique Fédérale de Lausanne
Abstract
Scalable join processing in a parallel shared-nothing environment requires a partitioning policy that evenly distributes the processing load while minimizing the size of state maintained and number of messages communicated. Previous research proposes static partitioning schemes that require statistics beforehand. In an online or streaming environment in which no statistics about the workload are known, traditional static approaches perform poorly.
This paper presents a novel parallel online dataflow join operator that supports arbitrary join predicates. The proposed operator continuously adjusts itself to the data dynamics through adaptive dataflow routing and state repartitioning. The operator is resilient to data skew, maintains high throughput rates, avoids blocking behavior during state repartitioning, takes an eventual consistency approach for maintaining its local state, and behaves strongly consistently as a black-box dataflow operator. We prove that the operator ensures a constant competitive ratio 3:75 in data distribution optimality and that the cost of processing an input tuple is amortized constant, taking into account adaptivity costs. Our evaluation demonstrates that our operator outperforms the state-of-the-art static partitioning schemes in resource utilization, throughput, and execution time.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献