Index checkpoints for instant recovery in in-memory database systems

Author:

Lee Leon1,Xie Siphrey1,Ma Yunus1,Chen Shimin2

Affiliation:

1. Lab of HuaweiCloud, Beijing, China

2. Chinese Academy of Sciences, Beijing, China

Abstract

We observe that the time bottleneck during the recovery phase of an IMDB (In-Memory DataBase system) shifts from log replaying to index rebuilding after the state-of-art techniques for instant recovery have been applied. In this paper, we investigate index checkpoints to eliminate this bottleneck. However, improper designs may lead to inconsistent index checkpoints or incur severe performance degradation. For the correctness challenge, we combine two techniques, i.e. , deferred deletion of index entries, and on-demand clean-up of dangling index entries after recovery, to achieve data correctness. For the efficiency challenge, we propose three wait-free index checkpoint algorithms, i.e., ChainIndex, MirrorIndex, IACoW , for supporting efficient normal processing and fast recovery. We implement our proposed solutions in HiEngine, an IMDB being developed as part of Huawei's next-generation cloud-native database product. We evaluate the impact of index checkpoint persistence on recovery and transaction performance using two workloads ( i.e. , TPC-C and Microbench). We analyze the pros and cons of each algorithm. Our experimental results show that HiEngine can be recovered instantly ( i.e. , in ~10 s) with only slight ( i.e. , 5% - 11%) performance degradation. Therefore, we strongly recommend integrating index checkpointing into IMDBs if recovery time is a crucial product metric.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference49 articles.

1. Write-behind logging

2. HOT

3. Tuan Cao , M. V. Salles , B. Sowell , Yao Yue , A. Demers , J. Gehrke , and Walker M . White . 2011 . Fast checkpoint recovery algorithms for frequently consistent applications. In SIGMOD. Tuan Cao, M. V. Salles, B. Sowell, Yao Yue, A. Demers, J. Gehrke, and Walker M. White. 2011. Fast checkpoint recovery algorithms for frequently consistent applications. In SIGMOD.

4. D. DeWitt R. Katz F. Olken Leonard D. Shapiro M. Stonebraker and D. Wood. 1984. Implementation techniques for main memory database systems. In SIGMOD. D. DeWitt R. Katz F. Olken Leonard D. Shapiro M. Stonebraker and D. Wood. 1984. Implementation techniques for main memory database systems. In SIGMOD.

5. J. Gehrke and Tuan Cao. 2013. Fault tolerance for main-memory applications in the cloud. J. Gehrke and Tuan Cao. 2013. Fault tolerance for main-memory applications in the cloud.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Riveter: Adaptive Query Suspension and Resumption Framework for Cloud Native Databases;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. MM-DIRECT;The VLDB Journal;2024-03-27

3. Fir: Achieving High Throughput and Fast Recovery in Non-Volatile Memory Oltp Engine;2024

4. A Survey on Epoch-based In-Memory Database Systems;2023 14th International Conference on Information and Communication Technology Convergence (ICTC);2023-10-11

5. Breathing New Life into an Old Tree: Resolving Logging Dilemma of B + -tree on Modern Computational Storage Drives;Proceedings of the VLDB Endowment;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3