Pushing the boundaries of crowd-enabled databases with query-driven schema expansion

Author:

Selke Joachim1,Lofi Christoph1,Balke Wolf-Tilo1

Affiliation:

1. Technische Universität Braunschweig, Braunschweig, Germany

Abstract

By incorporating human workers into the query execution process crowd-enabled databases facilitate intelligent, social capabilities like completing missing data at query time or performing cognitive operators. But despite all their flexibility, crowd-enabled databases still maintain rigid schemas. In this paper, we extend crowd-enabled databases by flexible query-driven schema expansion, allowing the addition of new attributes to the database at query time. However, the number of crowd-sourced mini-tasks to fill in missing values may often be prohibitively large and the resulting data quality is doubtful. Instead of simple crowd-sourcing to obtain all values individually, we leverage the usergenerated data found in the Social Web: By exploiting user ratings we build perceptual spaces , i.e., highly-compressed representations of opinions, impressions, and perceptions of large numbers of users. Using few training samples obtained by expert crowd sourcing, we then can extract all missing data automatically from the perceptual space with high quality and at low costs. Extensive experiments show that our approach can boost both performance and quality of crowd-enabled databases, while also providing the flexibility to expand schemas in a query-driven fashion.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visual Life Sciences Workflow Design using Distributed and Heterogeneous Resources;IEEE/ACM Transactions on Computational Biology and Bioinformatics;2019

2. Beyond Micro-Tasks;Crowdsourcing;2019

3. Beyond Micro-Tasks;Social Entrepreneurship;2019

4. Beyond Micro-Tasks;Journal of Database Management;2018-01

5. Crowdsourcing for data management;Knowledge and Information Systems;2017-05-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3