A Bayesian approach to discovering truth from conflicting sources for data integration

Author:

Zhao Bo1,Rubinstein Benjamin I. P.2,Gemmell Jim2,Han Jiawei1

Affiliation:

1. University of Illinois, Urbana, IL

2. Microsoft Research, Mountain View, CA

Abstract

In practical data integration systems, it is common for the data sources being integrated to provide conflicting information about the same entity. Consequently, a major challenge for data integration is to derive the most complete and accurate integrated records from diverse and sometimes conflicting sources. We term this challenge the truth finding problem . We observe that some sources are generally more reliable than others, and therefore a good model of source quality is the key to solving the truth finding problem. In this work, we propose a probabilistic graphical model that can automatically infer true records and source quality without any supervision. In contrast to previous methods, our principled approach leverages a generative process of two types of errors (false positive and false negative) by modeling two different aspects of source quality. In so doing, ours is also the first approach designed to merge multi-valued attribute types. Our method is scalable, due to an efficient sampling-based inference algorithm that needs very few iterations in practice and enjoys linear time complexity, with an even faster incremental variant. Experiments on two real world datasets show that our new method outperforms existing state-of-the-art approaches to the truth finding problem.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 229 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detect-Then-Resolve: Enhancing Knowledge Graph Conflict Resolution with Large Language Model;Mathematics;2024-07-24

2. Trustworthiness Evaluation of Internet of Vehicles Nodes Based on Real-Time Perception and Long-Term Reputation;2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS);2024-05-17

3. BClean: A Bayesian Data Cleaning System;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Generalizing truth discovery by incorporating multi-truth features;Computing;2024-04-22

5. FusionQuery: On-demand Fusion Queries over Multi-source Heterogeneous Data;Proceedings of the VLDB Endowment;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3