Explaining monotonic ranking functions

Author:

Gale Abraham1,Marian Amélie1

Affiliation:

1. Rutgers, the State University of New Jersey

Abstract

Ranking functions are commonly used to assist in decision-making in a wide variety of applications. As the general public realizes the significant societal impacts of the widespread use of algorithms in decision-making, there has been a push towards explainability and transparency in decision processes and results, as well as demands to justify the fairness of the processes. In this paper, we focus on providing metrics towards explainability and transparency of ranking functions, with a focus towards making the ranking process understandable, a priori , so that decision-makers can make informed choices when designing their ranking selection process. We propose transparent participation metrics to clarify the ranking process, by assessing the contribution of each parameter used in the ranking function in the creation of the final ranked outcome, using information about the ranking functions themselves, as well as observations of the underlying distributions of the parameter values involved in the ranking. To evaluate the outcome of the ranking process, we propose diversity and disparity metrics to measure how similar the selected objects are to each other, and to the underlying data distribution. We evaluate the behavior of our metrics on synthetic data, as well as on data and ranking functions on two real-world scenarios: high school admissions and decathlon scoring.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explainable Disparity Compensation for Efficient Fair Ranking;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. A Human-in-the-loop Workflow for Multi-Factorial Sensitivity Analysis of Algorithmic Rankers;Proceedings of the Workshop on Human-In-the-Loop Data Analytics;2023-06-18

3. Algorithmic Transparency and Accountability through Crowdsourcing: A Study of the NYC School Admission Lottery;2023 ACM Conference on Fairness, Accountability, and Transparency;2023-06-12

4. CREDENCE: Counterfactual Explanations for Document Ranking;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

5. Mitigating Bias in Algorithmic Systems—A Fish-eye View;ACM Computing Surveys;2022-12-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3