Local dampening

Author:

Farias Victor A. E.1,Brito Felipe T.1,Flynn Cheryl2,Machado Javam C.1,Majumdar Subhabrata2,Srivastava Divesh2

Affiliation:

1. Universidade Federal do Ceará, Fortaleza, Ceará, Brazil

2. AT&T Labs Research

Abstract

Differential privacy is the state-of-the-art formal definition for data release under strong privacy guarantees. A variety of mechanisms have been proposed in the literature for releasing the noisy output of numeric queries (e.g., using the Laplace mechanism), based on the notions of global sensitivity and local sensitivity. However, although there has been some work on generic mechanisms for releasing the output of non-numeric queries using global sensitivity (e.g., the Exponential mechanism), the literature lacks generic mechanisms for releasing the output of non-numeric queries using local sensitivity to reduce the noise in the query output. In this work, we remedy this shortcoming and present the local dampening mechanism. We adapt the notion of local sensitivity for the non-numeric setting and leverage it to design a generic non-numeric mechanism. We illustrate the effectiveness of the local dampening mechanism by applying it to two diverse problems: (i) Influential node analysis. Given an influence metric, we release the top-k most influential nodes while preserving the privacy of the relationship between nodes in the network; (ii) Decision tree induction. We provide a private adaptation to the ID3 algorithm to build decision trees from a given tabular dataset. Experimental results show that we could reduce the use of privacy budget by 3 to 4 orders of magnitude for Influential node analysis and increase accuracy up to 12% for Decision tree induction when compared to global sensitivity based approaches.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local dampening: differential privacy for non-numeric queries via local sensitivity;The VLDB Journal;2023-01-10

2. Fairness, explainability, privacy, and robustness for trustworthy algorithmic decision-making;Big Data Analytics in Chemoinformatics and Bioinformatics;2023

3. Differentially Private Block Coordinate Descent for Linear Regression on Vertically Partitioned Data;Journal of Cybersecurity and Privacy;2022-11-09

4. Sensitivity Support in Data Privacy Algorithms;2022 2nd Asian Conference on Innovation in Technology (ASIANCON);2022-08-26

5. Data Anonymization with Diversity Constraints;IEEE Transactions on Knowledge and Data Engineering;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3