Interpretable and informative explanations of outcomes

Author:

El Gebaly Kareem1,Agrawal Parag2,Golab Lukasz1,Korn Flip3,Srivastava Divesh4

Affiliation:

1. University of Waterloo

2. Twitter, Inc.

3. Google Research

4. AT&T Labs--Research

Abstract

In this paper, we solve the following data summarization problem: given a multi-dimensional data set augmented with a binary attribute, how can we construct an interpretable and informative summary of the factors affecting the binary attribute in terms of the combinations of values of the dimension attributes? We refer to such summaries as explanation tables. We show the hardness of constructing optimally-informative explanation tables from data, and we propose effective and efficient heuristics. The proposed heuristics are based on sampling and include optimizations related to computing the information content of a summary from a sample of the data. Using real data sets, we demonstrate the advantages of explanation tables compared to related approaches that can be adapted to solve our problem, and we show significant performance benefits of our optimizations.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficiently Mitigating the Impact of Data Drift on Machine Learning Pipelines;Proceedings of the VLDB Endowment;2024-07

2. PLUTUS: Understanding Data Distribution Tailoring for Machine Learning;Companion of the 2024 International Conference on Management of Data;2024-06-09

3. On Integrating the Data-Science and Machine-Learning Pipelines for Responsible AI;Proceedings of the Conference on Governance, Understanding and Integration of Data for Effective and Responsible AI;2024-06-09

4. Counterfactual Explanation at Will, with Zero Privacy Leakage;Proceedings of the ACM on Management of Data;2024-05-29

5. Discovering approximate implicit domain orders through order dependencies;The VLDB Journal;2024-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3