SQL/MapReduce

Author:

Friedman Eric1,Pawlowski Peter1,Cieslewicz John1

Affiliation:

1. Aster Data Systems

Abstract

A user-defined function (UDF) is a powerful database feature that allows users to customize database functionality. Though useful, present UDFs have numerous limitations, including install-time specification of input and output schema and poor ability to parallelize execution. We present a new approach to implementing a UDF, which we call SQL/MapReduce (SQL/MR), that overcomes many of these limitations. We leverage ideas from the MapReduce programming paradigm to provide users with a straightforward API through which they can implement a UDF in the language of their choice. Moreover, our approach allows maximum flexibility as the output schema of the UDF is specified by the function itself at query plan-time . This means that a SQL/MR function is polymorphic. It can process arbitrary input because its behavior as well as output schema are dynamically determined by information available at query plan-time, such as the function's input schema and arbitrary user-provided parameters. This also increases reusability as the same SQL/MR function can be used on inputs with many different schemas or with different user-specified parameters. In this paper we describe the motivation for this new approach to UDFs as well as the implementation within Aster Data Systems' n Cluster database. We demonstrate that in the context of massively parallel, shared-nothing database systems, this model of computation facilitates highly scalable computation within the database. We also include examples of new applications that take advantage of this novel UDF framework.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Reasoning About Black-Box Udfs by Classifying their Performance Characteristics;International Conference on Information Systems Development;2024-09-09

2. To UDFs and Beyond: Demonstration of a Fully Decomposed Data Processor for General Data Wrangling Tasks;Proceedings of the VLDB Endowment;2023-08

3. User-Defined Functions in Modern Data Engines;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

4. Data Integration Revitalized: From Data Warehouse Through Data Lake to Data Mesh;Lecture Notes in Computer Science;2023

5. Meta's next-generation realtime monitoring and analytics platform;Proceedings of the VLDB Endowment;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3