DEX: Scalable Range Indexing on Disaggregated Memory

Author:

Lu Baotong1,Huang Kaisong2,Liang Chieh-Jan Mike1,Wang Tianzheng2,Lo Eric3

Affiliation:

1. Microsoft Research

2. Simon Fraser University

3. The Chinese University of Hong Kong

Abstract

Memory disaggregation can potentially allow memory-optimized range indexes such as B+-trees to scale beyond one machine while attaining high hardware utilization and low cost. Designing scalable indexes on disaggregated memory, however, is challenging due to rudimentary caching, unprincipled offloading and excessive inconsistency among servers. This paper proposes DEX, a new scalable B+-tree for memory disaggregation. DEX includes a set of techniques to reduce remote accesses, including logical partitioning, lightweight caching and cost-aware offloading. Our evaluation shows that DEX can outperform the state-of-the-art by 1.7--56.3×, and the advantage remains under various setups, such as cache size and skewness.

Publisher

Association for Computing Machinery (ACM)

Reference47 articles.

1. Christoph Anneser, Andreas Kipf, Huanchen Zhang, Thomas Neumann, and Alfons Kemper. 2022. Adaptive Hybrid Indexes. In Proceedings of the 2022 International Conference on Management of Data (Philadelphia, PA, USA) (SIGMOD '22). Association for Computing Machinery, New York, NY, USA, 1626--1639. 10.1145/3514221.3526121

2. Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht, and Viktor Leis. 2018. HOT: A Height Optimized Trie Index for Main-Memory Database Systems. In Proceedings of the 2018 International Conference on Management of Data (SIGMOD '18). 521--534.

3. Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis, Indiana, USA, June 10-11, 2010, Joseph M. Hellerstein, Surajit Chaudhuri, and Mendel Rosenblum (Eds.). ACM, 143--154. 10.1145/1807128.1807152

4. Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hodson. 2014. {FaRM}: Fast remote memory. In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14). 401--414.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3