D-Bot: Database Diagnosis System using Large Language Models

Author:

Zhou Xuanhe1,Li Guoliang1,Sun Zhaoyan1,Liu Zhiyuan1,Chen Weize1,Wu Jianming1,Liu Jiesi1,Feng Ruohang2,Zeng Guoyang3

Affiliation:

1. Department of Computer Science, Tsinghua University

2. Pigsty

3. ModelBest

Abstract

Database administrators (DBAs) play an important role in managing database systems. However, it is hard and tedious for DBAs to manage vast database instances and give timely response (waiting for hours is intolerable in many online cases). In addition, existing empirical methods only support limited diagnosis scenarios, which are also labor-intensive to update the diagnosis rules for database version updates. Recently large language models (LLMs) have shown great potential in various fields. Thus, we propose D-Bot , an LLM-based database diagnosis system that can automatically acquire knowledge from diagnosis documents, and generate reasonable and well-founded diagnosis report (i.e., identifying the root causes and solutions) within acceptable time (e.g., under 10 minutes compared to hours by a DBA). The techniques in D-Bot include ( i ) offline knowledge extraction from documents, ( ii ) automatic prompt generation (e.g., knowledge matching, tool retrieval), ( iii ) root cause analysis using tree search algorithm, and ( iv ) collaborative mechanism for complex anomalies with multiple root causes. We verify D-Bot on real benchmarks (including 539 anomalies of six typical applications), and the results show D-Bot can effectively identify root causes of unseen anomalies and significantly outperforms traditional methods and vanilla models like GPT-4.

Publisher

Association for Computing Machinery (ACM)

Reference71 articles.

1. 2023. HypoPG. Retrieved December 1, 2023 from https://github.com/HypoPG/hypopg

2. 2023. OpenAI. Retrieved December 1, 2023 from https://openai.com/

3. 2023. PGTune - calculate configuration for PostgreSQL based on the maximum performance for a given hardware configuration. Retrieved December 1, 2023 from https://pgtune.leopard.in.ua/

4. Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J Mior, and Daniel Lemire. 2018. Apache calcite: A foundational framework for optimized query processing over heterogeneous data sources. In Proceedings of the 2018 International Conference on Management of Data. 221--230.

5. Vance W Berger and YanYan Zhou. 2014. Kolmogorov-smirnov test: Overview. Wiley statsref: Statistics reference online (2014).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3