Affiliation:
1. Emory University
2. Simon Fraser University
3. Lenovo; CAS
Abstract
Skyline computation, aiming at identifying a set of skyline points that are not dominated by any other point, is particularly useful for multi-criteria data analysis and decision making. Traditional skyline computation, however, is inadequate to answer queries that need to analyze not only
individual
points but also
groups
of points. To address this gap, we generalize the original skyline definition to the novel group-based skyline (G-Skyline), which represents Pareto optimal groups that are not dominated by other groups. In order to compute G-Skyline groups consisting of
k
points efficiently, we present a novel structure that represents the points in a directed skyline graph and captures the dominance relationships among the points based on the first
k
skyline layers. We propose efficient algorithms to compute the first
k
skyline layers. We then present two heuristic algorithms to efficiently compute the G-Skyline groups: the point-wise algorithm and the unit group-wise algorithm, using various pruning strategies. The experimental results on the real NBA dataset and the synthetic datasets show that G-Skyline is interesting and useful, and our algorithms are efficient and scalable.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献