iRoad

Author:

Hendawi Abdeltawab M.1,Bao Jie1,Mokbel Mohamed F.1

Affiliation:

1. Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN

Abstract

This demo presents the iRoad framework for evaluating predictive queries on moving objects for road networks. The main promise of the iRoad system is to support a variety of common predictive queries including predictive point query, predictive range query, predictive KNN query, and predictive aggregate query. The iRoad framework is equipped with a novel data structure, named reachability tree, employed to determine the reachable nodes for a moving object within a specified future time Τ. In fact, the reachability tree prunes the space around each object in order to significantly reduce the computation time. So, iRoad is able to scale up to handle real road networks with millions of nodes, and it can process heavy workloads on large numbers of moving objects. During the demo, audience will be able to interact with iRoad through a well designed Graphical User Interface to issue different types of predictive queries on a real road network, to obtain the predictive heatmap of the area of interest, to follow the creation and the dynamic update of the reachability tree around a specific moving object, and finally to examine the system efficiency and scalability.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Road Extraction with Multi-Source Data Revisited: Completeness, Smoothness and Discrimination;Proceedings of the VLDB Endowment;2023-07

2. Location prediction: a deep spatiotemporal learning from external sensors data;Distributed and Parallel Databases;2020-06-25

3. Road network simplification for location-based services;GeoInformatica;2020-05-01

4. A Hybrid Aggregate Index Method for Trajectory Data;Mathematical Problems in Engineering;2019-08-18

5. Trajectory Prediction from a Mass of Sparse and Missing External Sensor Data;2019 20th IEEE International Conference on Mobile Data Management (MDM);2019-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3