Mining frequent patterns with differential privacy

Author:

Bonomi Luca1,Xiong Li1

Affiliation:

1. Department of Mathematics & Computer Science, Emory University, Atlanta

Abstract

The mining of frequent patterns is a fundamental component in many data mining tasks. A considerable amount of research on this problem has led to a wide series of efficient and scalable algorithms for mining frequent patterns. However, releasing these patterns is posing concerns on the privacy of the users participating in the data. Indeed the information from the patterns can be linked with a large amount of data available from other sources creating opportunities for adversaries to break the individual privacy of the users and disclose sensitive information. In this proposal, we study the mining of frequent patterns in a privacy preserving setting. We first investigate the difference between sequential and itemset patterns, and second we extend the definition of patterns by considering the absence and presence of noise in the data. This leads us in distinguishing the patterns between exact and noisy. For exact patterns, we describe two novel mining techniques that we previously developed. The first approach has been applied in a privacy preserving record linkage setting, where our solution is used to mine frequent patterns which are employed in a secure transformation procedure to link records that are similar. The second approach improves the mining utility results using a two-phase strategy which allows to effectively mine frequent substrings as well as prefixes patterns. For noisy patterns, first we formally define the patterns according to the type of noise and second we provide a set of potential applications that require the mining of these patterns. We conclude the paper by stating the challenges in this new setting and possible future research directions.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3