Why it is time for a HyPE

Author:

Breß Sebastian1,Saake Gunter1

Affiliation:

1. University of Magdeburg

Abstract

GPU acceleration is a promising approach to speed up query processing of database systems by using low cost graphic processors as coprocessors. Two major trends have emerged in this area: (1) The development of frameworks for scheduling tasks in heterogeneous CPU/GPU platforms, which is mainly in the context of coprocessing for applications and does not consider specifics of database-query processing and optimization. (2) The acceleration of database operations using efficient GPU algorithms, which typically cannot be applied easily on other database systems, because of their analytical-algorithm-specific cost models. One major challenge is how to combine traditional database query processing with GPU coprocessing techniques and efficient database operation scheduling in a GPU-aware query optimizer. In this thesis, we develop a hybrid query processing engine, which extends the traditional physical optimization process to generate hybrid query plans and to perform a cost-based optimization in a way that the advantages of CPUs and GPUs are combined. Furthermore, we aim at a portable solution between different GPU-accelerated database management systems to maximize applicability. Preliminary results indicate great potential.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heterogeneous Intra-Pipeline Device-Parallel Aggregations;Proceedings of the 20th International Workshop on Data Management on New Hardware;2024-06-09

2. LTPG: Large-Batch Transaction Processing on GPUs with Deterministic Concurrency Control;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Distributed GPU Joins on Fast RDMA-capable Networks;Proceedings of the ACM on Management of Data;2023-05-26

4. High-Performance Filters for GPUs;Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming;2023-02-21

5. D-Cubicle: boosting data transfer dynamically for large-scale analytical queries in single-GPU systems;Frontiers of Computer Science;2022-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3