New wine in an old bottle

Author:

Bhattacharya Arindam1,Gudesa Chathur2,Bagchi Amitabha1,Bedathur Srikanta1

Affiliation:

1. CSE, IIT Delhi, India

2. EE, IIT Delhi, India

Abstract

In many applications of Bloom filters, it is possible to exploit the patterns present in the inserted and non-inserted keys to achieve more compression than the standard Bloom filter. A new class of Bloom filters called Learned Bloom filters use machine learning models to exploit these patterns in the data. In practice, these methods and their variants raise many questions: the choice of machine learning models, the training paradigm to achieve the desired results, the choice of thresholds, the number of partitions in case multiple partitions are used, and other such design decisions. In this paper, we present a simple partitioned Bloom filter that works as follows: we partition the Bloom filter into segments, each of which uses a simple projection-based hash function computed using the data. We also provide a theoretical analysis that provides a principled way to select the design parameters of our method: number of hash functions and number of bits per partition. We perform empirical evaluations of our methods on various real-world datasets spanning several applications. We show that it can achieve an improvement in false positive rates of up to two orders of magnitude over standard Bloom filters for the same memory usage, and upto 50% better compression (bytes used per key) for same FPR, and, consistently beats the existing variants of learned Bloom filters.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Reinforcement Cuckoo Filter;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications;2024-05-20

2. A novel revocation management for distributed environment: a detailed study;Cluster Computing;2023-08-26

3. PA-LBF: Prefix-Based and Adaptive Learned Bloom Filter for Spatial Data;International Journal of Intelligent Systems;2023-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3