Chi

Author:

Mai Luo1,Zeng Kai2,Potharaju Rahul2,Xu Le3,Suh Steve2,Venkataraman Shivaram2,Costa Paolo4,Kim Terry2,Muthukrishnan Saravanan2,Kuppa Vamsi2,Dhulipalla Sudheer2,Rao Sriram2

Affiliation:

1. Imperial College London

2. Microsoft

3. UIUC

4. Imperial College London and Microsoft

Abstract

Stream-processing workloads and modern shared cluster environments exhibit high variability and unpredictability. Combined with the large parameter space and the diverse set of user SLOs, this makes modern streaming systems very challenging to statically configure and tune. To address these issues, in this paper we investigate a novel control-plane design, Chi, which supports continuous monitoring and feedback, and enables dynamic re-configuration. Chi leverages the key insight of embedding control-plane messages in the data-plane channels to achieve a low-latency and flexible control plane for stream-processing systems. Chi introduces a new reactive programming model and design mechanisms to asynchronously execute control policies, thus avoiding global synchronization. We show how this allows us to easily implement a wide spectrum of control policies targeting different use cases observed in production. Large-scale experiments using production workloads from a popular cloud provider demonstrate the flexibility and efficiency of our approach.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ads Recommendation in a Collapsed and Entangled World;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. FlexSP:(1 + β)-Choice based Flexible Stream Partitioning for Stateful Operators;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

3. DeCoCDR: Deployable Cloud-Device Collaboration for Cross-Domain Recommendation;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

4. Riveter: Adaptive Query Suspension and Resumption Framework for Cloud Native Databases;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. Exploring the Asynchrony of Slow Memory Filesystem with EasyIO;Proceedings of the Nineteenth European Conference on Computer Systems;2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3