Frontier

Author:

O'Keeffe Dan1,Salonidis Theodoros2,Pietzuch Peter1

Affiliation:

1. Imperial College London

2. IBM T.J. Watson Research Center

Abstract

In an edge deployment model, Internet-of-Things (IoT) applications, e.g. for building automation or video surveillance, must process data locally on IoT devices without relying on permanent connectivity to a cloud backend. The ability to harness the combined resources of multiple IoT devices for computation is influenced by the quality of wireless network connectivity. An open challenge is how practical edge-based IoT applications can be realised that are robust to changes in network bandwidth between IoT devices, due to interference and intermittent connectivity. We present Frontier , a distributed and resilient edge processing platform for IoT devices. The key idea is to express data-intensive IoT applications as continuous data-parallel streaming queries and to improve query throughput in an unreliable wireless network by exploiting network path diversity : a query includes operator replicas at different IoT nodes, which increases possible network paths for data. Frontier dynamically routes stream data to operator replicas based on network path conditions. Nodes probe path throughput and use backpressure stream routing to decide on transmission rates, while exploiting multiple operator replicas for data-parallelism. If a node loses network connectivity, a transient disconnection recovery mechanism reprocesses the lost data. Our experimental evaluation of Frontier shows that network path diversity improves throughput by 1.3×−2.8×for different IoT applications, while being resilient to intermittent network connectivity.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Edgelet computing: enabling privacy-preserving decentralized data processing at the network edge;Personal and Ubiquitous Computing;2024-06-14

2. Fault Tolerance Placement in the Internet of Things;Proceedings of the ACM on Management of Data;2024-05-29

3. F-TADOC: FPGA-Based Text Analytics Directly on Compression with HLS;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. A Predictive Profiling and Performance Modeling Approach for Distributed Stream Processing in Edge;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. Janus: Latency-Aware Traffic Scheduling for IoT Data Streaming in Edge Environments;IEEE Transactions on Services Computing;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3