ADnEV

Author:

Shraga Roee1,Gal Avigdor1,Roitman Haggai2

Affiliation:

1. Technion, Haifa, Israel

2. IBM Research - AI, Haifa, Israel

Abstract

Schema matching is a process that serves in integrating structured and semi-structured data. Being a handy tool in multiple contemporary business and commerce applications, it has been investigated in the fields of databases, AI, Semantic Web, and data mining for many years. The core challenge still remains the ability to create quality algorithmic matchers, automatic tools for identifying correspondences among data concepts ( e.g. , database attributes). In this work, we offer a novel post processing step to schema matching that improves the final matching outcome without human intervention. We present a new mechanism, similarity matrix adjustment , to calibrate a matching result and propose an algorithm (dubbed ADnEV) that manipulates, using deep neural networks, similarity matrices, created by state-of-the-art algorithmic matchers. ADnEV learns two models that iteratively adjust and evaluate the original similarity matrix. We empirically demonstrate the effectiveness of the proposed algorithmic solution for improving matching results, using real-world benchmark ontology and schema sets. We show that ADnEV can generalize into new domains without the need to learn the domain terminology, thus allowing cross-domain learning. We also show ADnEV to be a powerful tool in handling schemata which matching is particularly challenging. Finally, we show the benefit of using ADnEV in a related integration task of ontology alignment.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overview on Data Ingestion and Schema Matching;Data and Metadata;2024-08-02

2. Gen-T: Table Reclamation in Data Lakes;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. In Situ Neural Relational Schema Matcher;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Multi-view representation learning for tabular data integration using inter-feature relationships;Journal of Biomedical Informatics;2024-03

5. Analytic Processing in Data Lakes: A Semantic Query-Driven Discovery Approach;Information Systems Frontiers;2024-02-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3