VHP

Author:

Lu Kejing1,Wang Hongya2,Wang Wei3,Kudo Mineichi1

Affiliation:

1. Hokkaido University, Japan

2. Donghua University, China

3. University of New South Wales, Australia

Abstract

Locality sensitive hashing (LSH) is a widely practiced c -approximate nearest neighbor( c -ANN) search algorithm in high dimensional spaces. The state-of-the-art LSH based algorithm searches an unbounded and irregular space to identify candidates, which jeopardizes the efficiency. To address this issue, we introduce the concept of virtual hypersphere partitioning. The core idea is to impose a virtual hypersphere, centered at the query, in the original feature space and only examine points inside the hypersphere. The search space of a hypersphere is isotropic and bounded, and thus more efficient than the existing one. In practice, we use multiple physical hyperspheres with different radii in corresponding projection subspaces to emulate the single virtual hypersphere. We also developed a principled method to compute the hypersphere radii for given success probability. Based on virtual hypersphere partitioning, we propose a novel disk-based indexing and searching scheme VHP to answer c -ANN queries. In the indexing phase, VHP stores LSH projections with independent B + -trees. To process a query, VHP keeps increasing the radii of physical hyperspheres co-ordinately, which in effect amounts to enlarging the virtual hypersphere, to accommodate more candidates until the success probability is met. Rigorous theoretical analysis shows that the proposed algorithm supports c -ANN search for arbitrarily small c ≥ 1 with probability guarantee. Extensive experiments on a variety of datasets, including the billion-scale ones, demonstrate that VHP could achieve different tradeoffs between efficiency and accuracy, and achieves up to 2x speedup in running time over the state-of-the-art methods.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3