Computing how-provenance for SPARQL queries via query rewriting

Author:

Hernández Daniel1,Galárraga Luis2,Hose Katja1

Affiliation:

1. Aalborg University, Denmark

2. Inria, France

Abstract

Over the past few years, we have witnessed the emergence of large knowledge graphs built by extracting and combining information from multiple sources. This has propelled many advances in query processing over knowledge graphs, however the aspect of providing provenance explanations for query results has so far been mostly neglected. We therefore propose a novel method, SPARQLprov, based on query rewriting, to compute how-provenance polynomials for SPARQL queries over knowledge graphs. Contrary to existing works, SPARQLprov is system-agnostic and can be applied to standard and already deployed SPARQL engines without the need of customized extensions. We rely on spm-semirings to compute polynomial annotations that respect the property of commutation with homomorphisms on monotonic and non-monotonic SPARQL queries without aggregate functions. Our evaluation on real and synthetic data shows that SPARQLprov over standard engines incurs an acceptable runtime overhead w.r.t. the original query, competing with state-of-the-art solutions for how-provenance computation.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3