Discovering related data at scale

Author:

Bharadwaj Sagar1,Gupta Praveen1,Bhagwan Ranjita1,Guha Saikat1

Affiliation:

1. Microsoft Research

Abstract

Analysts frequently require data from multiple sources for their tasks, but finding these sources is challenging in exabyte-scale data lakes. In this paper, we address this problem for our enterprise's data lake by using machine-learning to identify related data sources. Leveraging queries made to the data lake over a month, we build a relevance model that determines whether two columns across two data streams are related or not. We then use the model to find relations at scale across tens of millions of column-pairs and thereafter construct a data relationship graph in a scalable fashion, processing a data lake that has 4.5 Petabytes of data in approximately 80 minutes. Using manually labeled datasets as ground-truth, we show that our techniques show improvements of at least 23% when compared to state-of-the-art methods.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A multi-start simulated annealing strategy for Data Lake Organization Problem;Applied Soft Computing;2024-07

2. Fainder: A Fast and Accurate Index for Distribution-Aware Dataset Search;Proceedings of the VLDB Endowment;2024-07

3. AutoFeat: Transitive Feature Discovery over Join Paths;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. R2D2: Reducing Redundancy and Duplication in Data Lakes;Proceedings of the ACM on Management of Data;2023-12-08

5. Data Lakes: A Survey of Functions and Systems;IEEE Transactions on Knowledge and Data Engineering;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3