On differentially private frequent itemset mining

Author:

Zeng Chen1,Naughton Jeffrey F.1,Cai Jin-Yi1

Affiliation:

1. University of Wisconsin-Madison, Madison, WI

Abstract

We consider differentially private frequent itemset mining. We begin by exploring the theoretical difficulty of simultaneously providing good utility and good privacy in this task. While our analysis proves that in general this is very difficult, it leaves a glimmer of hope in that our proof of difficulty relies on the existence of long transactions (that is, transactions containing many items). Accordingly, we investigate an approach that begins by truncating long transactions, trading off errors introduced by the truncation with those introduced by the noise added to guarantee privacy. Experimental results over standard benchmark databases show that truncating is indeed effective. Our algorithm solves the "classical" frequent itemset mining problem, in which the goal is to find all itemsets whose support exceeds a threshold. Related work has proposed differentially private algorithms for the top- k itemset mining problem ("find the k most frequent itemsets".) An experimental comparison with those algorithms show that our algorithm achieves better F -score unless k is small.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Privacy-Enhanced Frequent Sequence Mining and Retrieval for Personalized Behavior Prediction;IEEE Transactions on Information Forensics and Security;2024

2. Locally Private Set-valued Data Analyses: Distribution and Heavy Hitters Estimation;IEEE Transactions on Mobile Computing;2024

3. Differential Privacy on Edge Computing;IEEE Nanotechnology Magazine;2023-12

4. Hadamard Encoding Based Frequent Itemset Mining under Local Differential Privacy;Journal of Computer Science and Technology;2023-11-30

5. Differential Privacy Frequent Closed Itemset Mining over Data Stream;2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom);2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3