Affiliation:
1. University of Wisconsin-Madison, Madison, WI
Abstract
We consider differentially private frequent itemset mining. We begin by exploring the theoretical difficulty of simultaneously providing good utility and good privacy in this task. While our analysis proves that in general this is very difficult, it leaves a glimmer of hope in that our proof of difficulty relies on the existence of long transactions (that is, transactions containing many items). Accordingly, we investigate an approach that begins by truncating long transactions, trading off errors introduced by the truncation with those introduced by the noise added to guarantee privacy. Experimental results over standard benchmark databases show that truncating is indeed effective. Our algorithm solves the "classical" frequent itemset mining problem, in which the goal is to find all itemsets whose support exceeds a threshold. Related work has proposed differentially private algorithms for the top-
k
itemset mining problem ("find the
k
most frequent itemsets".) An experimental comparison with those algorithms show that our algorithm achieves better
F
-score unless
k
is small.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献