Automating large-scale data quality verification

Author:

Schelter Sebastian1,Lange Dustin1,Schmidt Philipp1,Celikel Meltem1,Biessmann Felix1,Grafberger Andreas2

Affiliation:

1. Amazon Research

2. University of Augsburg and Amazon Research

Abstract

Modern companies and institutions rely on data to guide every single business process and decision. Missing or incorrect information seriously compromises any decision process downstream. Therefore, a crucial, but tedious task for everyone involved in data processing is to verify the quality of their data. We present a system for automating the verification of data quality at scale, which meets the requirements of production use cases. Our system provides a declarative API, which combines common quality constraints with user-defined validation code, and thereby enables 'unit tests' for data. We efficiently execute the resulting constraint validation workload by translating it to aggregation queries on Apache Spark. Our platform supports the incremental validation of data quality on growing datasets, and leverages machine learning, e.g., for enhancing constraint suggestions, for estimating the 'predictability' of a column, and for detecting anomalies in historic data quality time series. We discuss our design decisions, describe the resulting system architecture, and present an experimental evaluation on various datasets.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adversarial Machine Learning in Industry: A Systematic Literature Review;Computers & Security;2024-10

2. A Survey on Verification and Validation, Testing and Evaluations of Neurosymbolic Artificial Intelligence;IEEE Transactions on Artificial Intelligence;2024-08

3. AI Data Readiness Inspector (AIDRIN) for Quantitative Assessment of Data Readiness for AI;Proceedings of the 36th International Conference on Scientific and Statistical Database Management;2024-07-10

4. Data Ingestion Validation Through Stable Conditional Metrics with Ranking and Filtering;Information Systems Frontiers;2024-07-05

5. Efficiently Mitigating the Impact of Data Drift on Machine Learning Pipelines;Proceedings of the VLDB Endowment;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3