Affiliation:
1. Amazon Research
2. University of Augsburg and Amazon Research
Abstract
Modern companies and institutions rely on data to guide every single business process and decision. Missing or incorrect information seriously compromises any decision process downstream. Therefore, a crucial, but tedious task for everyone involved in data processing is to verify the quality of their data. We present a system for automating the verification of data quality at scale, which meets the requirements of production use cases. Our system provides a declarative API, which combines common quality constraints with user-defined validation code, and thereby enables 'unit tests' for data. We efficiently execute the resulting constraint validation workload by translating it to aggregation queries on Apache Spark. Our platform supports the incremental validation of data quality on growing datasets, and leverages machine learning, e.g., for enhancing constraint suggestions, for estimating the 'predictability' of a column, and for detecting anomalies in historic data quality time series. We discuss our design decisions, describe the resulting system architecture, and present an experimental evaluation on various datasets.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
122 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献