Parallel graph algorithms in constant adaptive rounds

Author:

Behnezhad Soheil1,Dhulipala Laxman2,Esfandiari Hossein3,Lacki Jakub3,Mirrokni Vahab3,Schudy Warren3

Affiliation:

1. University of Maryland

2. MIT CSAIL

3. Google Research

Abstract

We study fundamental graph problems such as graph connectivity, minimum spanning forest (MSF), and approximate maximum (weight) matching in a distributed setting. In particular, we focus on the Adaptive Massively Parallel Computation (AMPC) model, which is a theoretical model that captures MapReduce-like computation augmented with a distributed hash table. We show the first AMPC algorithms for all of the studied problems that run in a constant number of rounds and use only O ( n ϵ ) space per machine, where 0 < ϵ < 1. Our results improve both upon the previous results in the AMPC model, as well as the best-known results in the MPC model, which is the theoretical model underpinning many popular distributed computation frameworks, such as MapReduce, Hadoop, Beam, Pregel and Giraph. Finally, we provide an empirical comparison of the algorithms in the MPC and AMPC models in a fault-tolerant distributed computation environment. We empirically evaluate our algorithms on a set of large real-world graphs and show that our AMPC algorithms can achieve improvements in both running time and round-complexity over optimized MPC baselines.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Massively Parallel Connectivity in Optimal Space;Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures;2023-06-17

2. Massively Parallel Tree Embeddings for High Dimensional Spaces;Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures;2023-06-17

3. Engineering Massively Parallel MST Algorithms;2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS);2023-05

4. Adaptive Massively Parallel Algorithms for Cut Problems;Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures;2022-07-11

5. Time-Optimal Sublinear Algorithms for Matching and Vertex Cover;2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS);2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3