Counting with the crowd

Author:

Marcus Adam1,Karger David1,Madden Samuel1,Miller Robert1,Oh Sewoong1

Affiliation:

1. MIT, CSAIL

Abstract

In this paper, we address the problem of selectivity estimation in a crowdsourced database. Specifically, we develop several techniques for using workers on a crowdsourcing platform like Amazon's Mechanical Turk to estimate the fraction of items in a dataset (e.g., a collection of photos) that satisfy some property or predicate (e.g., photos of trees). We do this without explicitly iterating through every item in the dataset. This is important in crowd-sourced query optimization to support predicate ordering and in query evaluation, when performing a GROUP BY operation with a COUNT or AVG aggregate. We compare sampling item labels, a traditional approach, to showing workers a collection of items and asking them to estimate how many satisfy some predicate. Additionally, we develop techniques to eliminate spammers and colluding attackers trying to skew selectivity estimates when using this count estimation approach. We find that for images, counting can be much more effective than sampled labeling, reducing the amount of work necessary to arrive at an estimate that is within 1% of the true fraction by up to an order of magnitude, with lower worker latency. We also find that sampled labeling outperforms count estimation on a text processing task, presumably because people are better at quickly processing large batches of images than they are at reading strings of text. Our spammer detection technique, which is applicable to both the label- and count-based approaches, can improve accuracy by up to two orders of magnitude.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Crowdsourcing of labeling image objects: an online gamification application for data collection;Multimedia Tools and Applications;2023-08-04

2. A hunt for the Snark: Annotator Diversity in Data Practices;Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems;2023-04-19

3. Adaptive Clustering-Based Collusion Detection in Crowdsourcing;Lecture Notes in Computer Science;2023

4. Self-paced annotations of crowd workers;Knowledge and Information Systems;2022-09-22

5. Crowdsourcing of Labeling Image Objects: An Online Gamification Application for Data Collection;SSRN Electronic Journal;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3