Large scale cohesive subgraphs discovery for social network visual analysis

Author:

Zhao Feng1,Tung Anthony K. H.1

Affiliation:

1. School of Computing, National University of Singapore

Abstract

Graphs are widely used in large scale social network analysis nowadays. Not only analysts need to focus on cohesive subgraphs to study patterns among social actors, but also normal users are interested in discovering what happening in their neighborhood. However, effectively storing large scale social network and efficiently identifying cohesive subgraphs is challenging. In this work we introduce a novel subgraph concept to capture the cohesion in social interactions, and propose an I/O efficient approach to discover cohesive subgraphs. Besides, we propose an analytic system which allows users to perform intuitive, visual browsing on large scale social networks. Our system stores the network as a social graph in the graph database, retrieves a local cohesive subgraph based on the input keywords, and then hierarchically visualizes the subgraph out on orbital layout, in which more important social actors are located in the center. By summarizing textual interactions between social actors as tag cloud, we provide a way to quickly locate active social communities and their interactions in a unified view.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explainable decomposition of nested dense subgraphs;Data Mining and Knowledge Discovery;2024-07-10

2. Efficient Algorithms for Density Decomposition on Large Static and Dynamic Graphs;Proceedings of the VLDB Endowment;2024-07

3. Efficient Algorithms for Pseudoarboricity Computation in Large Static and Dynamic Graphs;Proceedings of the VLDB Endowment;2024-07

4. A Counting-based Approach for Efficient k-Clique Densest Subgraph Discovery;Proceedings of the ACM on Management of Data;2024-05-29

5. Parallel Algorithms for Hierarchical Nucleus Decomposition;Proceedings of the ACM on Management of Data;2024-03-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3