An in-depth comparison of subgraph isomorphism algorithms in graph databases

Author:

Lee Jinsoo1,Han Wook-Shin1,Kasperovics Romans1,Lee Jeong-Hoon1

Affiliation:

1. School of Computer Science and Engineering, Kyungpook National University, Korea

Abstract

Finding subgraph isomorphisms is an important problem in many applications which deal with data modeled as graphs. While this problem is NP-hard, in recent years, many algorithms have been proposed to solve it in a reasonable time for real datasets using different join orders, pruning rules, and auxiliary neighborhood information. However, since they have not been empirically compared one another in most research work, it is not clear whether the later work outperforms the earlier work. Another problem is that reported comparisons were often done using the original authors' binaries which were written in different programming environments. In this paper, we address these serious problems by re-implementing five state-of-the-art subgraph isomorphism algorithms in a common code base and by comparing them using many real-world datasets and their query loads. Through our in-depth analysis of experimental results, we report surprising empirical findings.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 186 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient approach for discovering Graph Entity Dependencies (GEDs);Information Systems;2024-11

2. BF-BigGraph: An efficient subgraph isomorphism approach using machine learning for big graph databases;Information Systems;2024-09

3. ArcMatch: high-performance subgraph matching for labeled graphs by exploiting edge domains;Data Mining and Knowledge Discovery;2024-08-07

4. FRESH: Towards Efficient Graph Queries in an Outsourced Graph;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. Large Subgraph Matching: A Comprehensive and Efficient Approach for Heterogeneous Graphs;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3