A probabilistic approach for automatically filling form-based web interfaces

Author:

Toda Guilherme A.1,Cortez Eli2,da Silva Altigran S.2,de Moura Edleno2

Affiliation:

1. Federal University of Amazonas and Nhemu Technologies

2. Federal University of Amazonas

Abstract

In this paper we present a proposal for the implementation and evaluation of a novel method for automatically using data-rich text for filling form-based input interfaces. Our solution takes a text as input, extracts implicit data values from it and fills appropriate fields. For this task, we rely on knowledge obtained from values of previous submissions for each field, which are freely obtained from the usage of the interfaces. Our approach, called iForm , exploits features related to the content and the style of these values, which are combined through a Bayesian framework. Through extensive experimentation, we show that our approach is feasible and effective, and that it works well even when only a few previous submissions to the input interface are available.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semantic Constraint Inference for Web Form Test Generation;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

2. A Smart User Interface for Structured Deep Web Search;2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE);2023-07-24

3. A Machine Learning Approach for Automated Filling of Categorical Fields in Data Entry Forms;ACM Transactions on Software Engineering and Methodology;2023-04-04

4. Mapping Strategies for Declarative Queries over Online Heterogeneous Biological Databases for Intelligent Responses;Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing;2023-03-27

5. Automated Selection of Web Form Text Field Values Based on Bayesian Inferences;International Journal of Information Retrieval Research;2023-02-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3