On Efficient Approximate Queries over Machine Learning Models

Author:

Ding Dujian1,Amer-Yahia Sihem2,Lakshmanan Laks1

Affiliation:

1. University of British Columbia, Vancouver, Canada

2. CNRS, Univ. Grenoble Alpes, Grenoble, France

Abstract

The question of answering queries over ML predictions has been gaining attention in the database community. This question is challenging because finding high quality answers by invoking an oracle such as a human expert or an expensive deep neural network model on every single item in the DB and then applying the query, can be prohibitive. We develop a novel unified framework for approximate query answering by leveraging a proxy to minimize the oracle usage of finding high quality answers for both Precision-Target (PT) and Recall-Target (RT) queries. Our framework uses a judicious combination of invoking the expensive oracle on data samples and applying the cheap proxy on the DB objects. It relies on two assumptions. Under the P roxy Q uality assumption, we develop two algorithms: PQA that efficiently finds high quality answers with high probability and no oracle calls, and PQE, a heuristic extension that achieves empirically good performance with a small number of oracle calls. Alternatively, under the C ore S et C losure assumption, we develop two algorithms: CSC that efficiently returns high quality answers with high probability and minimal oracle usage, and CSE, which extends it to more general settings. Our extensive experiments on five real-world datasets on both query types, PT and RT, demonstrate that our algorithms outperform the state-of-the-art and achieve high result quality with provable statistical guarantees.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference51 articles.

1. Zeeshan Ahmed , Saeed Amizadeh , Mikhail Bilenko , Rogan Carr , Wei-Sheng Chin , Yael Dekel , Xavier Dupré , Vadim Eksarevskiy , Senja Filipi , Tom Finley , Abhishek Goswami , Monte Hoover , Scott Inglis , Matteo Interlandi , Najeeb Kazmi , Gleb Krivosheev , Pete Luferenko , Ivan Matantsev , Sergiy Matusevych , Shahab Moradi , Gani Nazirov , Justin Ormont , Gal Oshri , Artidoro Pagnoni , Jignesh Parmar , Prabhat Roy , Mohammad Zeeshan Siddiqui , Markus Weimer , Shauheen Zahirazami , and Yiwen Zhu . 2019 . Machine Learning at Microsoft with ML.NET . In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019 , Anchorage, AK, USA , August 4-8, 2019, Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis (Eds.). ACM, 2448--2458. Zeeshan Ahmed, Saeed Amizadeh, Mikhail Bilenko, Rogan Carr, Wei-Sheng Chin, Yael Dekel, Xavier Dupré, Vadim Eksarevskiy, Senja Filipi, Tom Finley, Abhishek Goswami, Monte Hoover, Scott Inglis, Matteo Interlandi, Najeeb Kazmi, Gleb Krivosheev, Pete Luferenko, Ivan Matantsev, Sergiy Matusevych, Shahab Moradi, Gani Nazirov, Justin Ormont, Gal Oshri, Artidoro Pagnoni, Jignesh Parmar, Prabhat Roy, Mohammad Zeeshan Siddiqui, Markus Weimer, Shauheen Zahirazami, and Yiwen Zhu. 2019. Machine Learning at Microsoft with ML.NET. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis (Eds.). ACM, 2448--2458.

2. Mohammad Alodadi and Vandana P. Janeja . 2015 . Similarity in Patient Support Forums Using TF-IDF and Cosine Similarity Metrics. In 2015 International Conference on Healthcare Informatics. 521--522 . 10.1109/ICHI. 2015 .99 Mohammad Alodadi and Vandana P. Janeja. 2015. Similarity in Patient Support Forums Using TF-IDF and Cosine Similarity Metrics. In 2015 International Conference on Healthcare Informatics. 521--522. 10.1109/ICHI.2015.99

3. Michael R. Anderson , Michael J. Cafarella , German Ros , and Thomas F. Wenisch . 2019. Physical Representation-Based Predicate Optimization for a Visual Analytics Database . In 35th IEEE International Conference on Data Engineering, ICDE 2019 , Macao, China , April 8-11, 2019 . 1466--1477. Michael R. Anderson, Michael J. Cafarella, German Ros, and Thomas F. Wenisch. 2019. Physical Representation-Based Predicate Optimization for a Visual Analytics Database. In 35th IEEE International Conference on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019. 1466--1477.

4. Jees Augustine , Suraj Shetiya , Mohammadreza Esfandiari , Senjuti Basu Roy , and Gautam Das . 2021 . A Generalized Approach for Reducing Expensive Distance Calls for A Broad Class of Proximity Problems . In Proceedings of the 2021 International Conference on Management of Data ( Virtual Event, China) (SIGMOD '21). Association for Computing Machinery, New York, NY, USA, 142--154. 10.1145/3448016.3457303 Jees Augustine, Suraj Shetiya, Mohammadreza Esfandiari, Senjuti Basu Roy, and Gautam Das. 2021. A Generalized Approach for Reducing Expensive Distance Calls for A Broad Class of Proximity Problems. In Proceedings of the 2021 International Conference on Management of Data (Virtual Event, China) (SIGMOD '21). Association for Computing Machinery, New York, NY, USA, 142--154. 10.1145/3448016.3457303

5. The complexity of finding fixed-radius near neighbors

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Future-Time Temporal Path Queries;Proceedings of the 6th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA);2023-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3