Density Personalized Group Query

Author:

Shen Chih-Ya1,Ko Shao-Heng2,Lee Guang-Siang2,Lee Wang-Chien3,Yang De-Nian4

Affiliation:

1. Department of Computer Science, National Tsing Hua University, Taiwan

2. Institute of Information Science, Academia Sinica, Taiwan

3. Department of Computer Science and Engineering, The Pennsylvania State University, USA

4. Institute of Information Science, Research Center for Information, Technology Innovation, Academia Sinica, Taiwan

Abstract

Research on new queries for finding dense subgraphs and groups has been actively pursued due to their many applications, especially in social network analysis and graph mining. However, existing work faces two major weaknesses: i) incapability of supporting personalized neighborhood density, and ii) inability to find sparse groups. To tackle the above issues, we propose a new query, called Density-Customized Social Group Query (DCSGQ), that accommodates the need for personalized density by allowing individual users to flexibly configure their social tightness (and sparseness) for the target group. The proposed DCSGQ is general due to flexible in configuration of neighboring social density in queries. We prove the NP-hardness and inapproximability of DCSGQ, formulate an Integer Program (IP) as a baseline, and propose an efficient algorithm, FSGSel-RR, by relaxing the IP. We then propose a fixed-parameter tractable algorithm with a performance guarantee, named FSGSel-TD, and further combine it with FSGSel-RR into a hybrid approach, named FSGSel-Hybrid, in order to strike a good balance between solution quality and efficiency. Extensive experiments on multiple large real datasets demonstrate the superior solution quality and efficiency of our approaches over existing subgraph and group queries.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Similarity-Aware Sampling for Machine Learning-Based Goal-Oriented Subgraph Extraction;ICC 2023 - IEEE International Conference on Communications;2023-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3